An affinity (IMAC) column (Figure S1A, lane 3) and the solubility rescuing effectThe Ebselen site Mechanism of Solubility Enhancement by MBPFigure 6. Overproduction of GroEL/S rescues the solubility defects of some MBP fusion proteins. Expression and solubility of wild type MBP (MBPwt) and mutant MBP (I329W) fusion proteins are shown in the figure. The co-expression of GroEL/S along with mutant MBP fusions rescues the solubility (right most pair of lanes). The passenger proteins were GFP (top), E6 (middle) and p16 (bottom). A Western blot using anti-His6 tag Fruquintinib manufacturer antibody is shown to the right since the fusion proteins and GroEL co-migrates in the case of E6 and p16 (MBP fusion proteins carry a His6 tag at the N-terminus); loading is similar to the respective gels on the left. doi:10.1371/journal.pone.0049589.gobserved upon co-expression of the GroES/L chaperonin with mutant MBP (I329W) fusion proteins (Figure 6) is also suggestive of an interaction with MBP. Based on the experiments reported here, along with the results of previous work [4,7,8,25,37,38,46], we propose the model for solubility enhancement and folding that is depicted in Figure 7. A protein that normally accumulates in the form of insoluble aggregates when expressed in an unfused form in E. coli (MBP absent) is prevented from doing so when fused to MBP (MBP as holdase). Exactly how MBP promotes the solubility of its fusion partners is unknown but this may involve a transient physical interaction between a folded MBP moiety and an incompletely folded passenger protein. Our refolding experiments confirm the existence of such partially folded intermediates. The incompletely folded passenger protein may engage in multiple rounds of binding to and release from MBP. Some passenger proteins reach their native conformation by spontaneous folding after one or more cycles, while in other 25033180 cases MBP facilitates the interaction between an incompletely folded passenger protein and one or moreendogenous chaperones. In both cases, MBP serves primarily as a “holdase”, keeping the incompletely folded passenger protein from forming insoluble aggregates until either spontaneous or chaperone-mediated folding can occur. A third class of passenger proteins is unable to fold via either of these pathways and exists perpetually in an incompletely folded state, either as an intramolecular or intermolecular (i.e., micelle-like) aggregate. These passenger proteins typically precipitate after they are cleaved from MBP by a site-specific protease [46]. The utilization of MBP as a “holdase” during the production of recombinant proteins may be of considerable practical value in 24786787 some cases. For instance, it may be fruitful to co-express GroEL/S along with MBP fusion proteins in cases when the yield of active recombinant protein is poor in spite of MBP tagging. Even though co-expression of GroEL/S with His6-MBP-G3PDH and His6MBP-DHFR did not lead to any appreciable enhancement of enzymatic activity (Figure S3), indicating that endogenous chaperone levels were sufficient to fold all of the passenger protein in these instances, the yield of other passenger proteins might beThe Mechanism of Solubility Enhancement by MBPFigure 7. A model illustrating the roles that MBP plays in the production of recombinant proteins (see text for discussion). doi:10.1371/journal.pone.0049589.gimproved by this approach. It would also be of interest to examine the effect of co-expressing various types of eukaryotic chaperones on the folding.An affinity (IMAC) column (Figure S1A, lane 3) and the solubility rescuing effectThe Mechanism of Solubility Enhancement by MBPFigure 6. Overproduction of GroEL/S rescues the solubility defects of some MBP fusion proteins. Expression and solubility of wild type MBP (MBPwt) and mutant MBP (I329W) fusion proteins are shown in the figure. The co-expression of GroEL/S along with mutant MBP fusions rescues the solubility (right most pair of lanes). The passenger proteins were GFP (top), E6 (middle) and p16 (bottom). A Western blot using anti-His6 tag antibody is shown to the right since the fusion proteins and GroEL co-migrates in the case of E6 and p16 (MBP fusion proteins carry a His6 tag at the N-terminus); loading is similar to the respective gels on the left. doi:10.1371/journal.pone.0049589.gobserved upon co-expression of the GroES/L chaperonin with mutant MBP (I329W) fusion proteins (Figure 6) is also suggestive of an interaction with MBP. Based on the experiments reported here, along with the results of previous work [4,7,8,25,37,38,46], we propose the model for solubility enhancement and folding that is depicted in Figure 7. A protein that normally accumulates in the form of insoluble aggregates when expressed in an unfused form in E. coli (MBP absent) is prevented from doing so when fused to MBP (MBP as holdase). Exactly how MBP promotes the solubility of its fusion partners is unknown but this may involve a transient physical interaction between a folded MBP moiety and an incompletely folded passenger protein. Our refolding experiments confirm the existence of such partially folded intermediates. The incompletely folded passenger protein may engage in multiple rounds of binding to and release from MBP. Some passenger proteins reach their native conformation by spontaneous folding after one or more cycles, while in other 25033180 cases MBP facilitates the interaction between an incompletely folded passenger protein and one or moreendogenous chaperones. In both cases, MBP serves primarily as a “holdase”, keeping the incompletely folded passenger protein from forming insoluble aggregates until either spontaneous or chaperone-mediated folding can occur. A third class of passenger proteins is unable to fold via either of these pathways and exists perpetually in an incompletely folded state, either as an intramolecular or intermolecular (i.e., micelle-like) aggregate. These passenger proteins typically precipitate after they are cleaved from MBP by a site-specific protease [46]. The utilization of MBP as a “holdase” during the production of recombinant proteins may be of considerable practical value in 24786787 some cases. For instance, it may be fruitful to co-express GroEL/S along with MBP fusion proteins in cases when the yield of active recombinant protein is poor in spite of MBP tagging. Even though co-expression of GroEL/S with His6-MBP-G3PDH and His6MBP-DHFR did not lead to any appreciable enhancement of enzymatic activity (Figure S3), indicating that endogenous chaperone levels were sufficient to fold all of the passenger protein in these instances, the yield of other passenger proteins might beThe Mechanism of Solubility Enhancement by MBPFigure 7. A model illustrating the roles that MBP plays in the production of recombinant proteins (see text for discussion). doi:10.1371/journal.pone.0049589.gimproved by this approach. It would also be of interest to examine the effect of co-expressing various types of eukaryotic chaperones on the folding.