Gambiae ss by qPCR. Among the 22 positive samples, mono infection with P. PS-1145 falciparum was found in 19 MedChemExpress AN 3199 samples (86 ), 1 sample showed mixed infection with P. falciparum and P. malariae (4.5 ), mixed infection with P. falciparum and P. ovale was observed in 1 sample (4.5 ), and in 1 sample mixed infection with 3 species (P. falciparum, P. malariae and P. ovale) was noted (4. 5 ). doi:10.1371/journal.pone.0052719.gReal-Time PCR Detection of Plasmodium in Mosquitorun. Plasmodium Pan-species and all species-specific Real-time PCR yielded efficiencies (E) above 90 . Among the 43 positives samples of An. gambiae, Plasmodium DNA was quantified in 39 samples (absolute copy number ranging from 10 to 913 copies, with the median, 158; [IQR = 93.65?59.8]) and in An. funestus, Plasmodium DNA was quantified in 19 samples of the 22 positive samples (absolute copy number ranging from 51.6 to 816 copies with the median, 333.9; [IQR = 198.9?27.7]). At the species level, DNA target specific to P. falciparum was detected in all positive samples and in the cases of mixed infections with multiples Plasmodium species, P. falciparum DNA was always detected at earlier Ct value indicating that it represented the dominant species. The PCR amplification of ribosomal protein S7 gene (E = 99 ) allowed the estimation of the amount of mosquito DNA in each reaction. Normalization of the amount of Plasmodium DNA on the amount of mosquito DNA showed no difference in parasite load observed between the infected An. gambiae and An. funestus studied (Kruskall-Wallis test, P = 0.2197) (Figure 3).DiscussionIn the context of malaria elimination (eradication) policy, it is essential to develop reliable diagnostic techniques for detecting Plasmodium spp infections in humans and in the vector. The aim of this study was to optimize a high-throughput sensitive and specific real-time PCR assay to detect and quantify Plasmodium infections in malaria vectors in Benin. Here, we used the same region of DNA encoding the small subunit of the18S rRNA to redefine the optimal multiplex PCR assays based on allele-specific primers/ probe systems previously reported by Shokoples et al. [7]. Minor sequence modifications and labeling were made on the probes used by Shokoples et al. [7] to increase specificity and adapt the method to a duplex-based detection system [26]. The genes encoding the small subunit of the18S rRNA exist in several copies (7) in the Plasmodium genome. One of the major advantages of the method previously reported by Shokoples et al. [7] over other approaches [13,18,19], is that the primers designed target all copies thus increasing the sensitivity of the reaction. The use of species-specific oligonucleotides that could accurately detect all four malaria-causing Plasmodium species (Pf, Pm, Po and Pv) without significant competition between the oligonucleotides designed for the different templates was one of the majorFigure 3. Absolute and relative quantification of Plasmodium DNA in mosquitoes. This figure shows a not significant difference was observed in the P. falciparum densities between the two Anopheles species (P-value = 0, 2197). doi:10.1371/journal.pone.0052719.gadvantages of this approach. Here, the multiplexing of the reaction was optimized for the simultaneous detection of the four Plasmodium species at a time in two reaction tubes. This method was tested on plasmid preparations and showed good amplification efficiencies (E.90 ). We also noticed a good sensitivity w.Gambiae ss by qPCR. Among the 22 positive samples, mono infection with P. falciparum was found in 19 samples (86 ), 1 sample showed mixed infection with P. falciparum and P. malariae (4.5 ), mixed infection with P. falciparum and P. ovale was observed in 1 sample (4.5 ), and in 1 sample mixed infection with 3 species (P. falciparum, P. malariae and P. ovale) was noted (4. 5 ). doi:10.1371/journal.pone.0052719.gReal-Time PCR Detection of Plasmodium in Mosquitorun. Plasmodium Pan-species and all species-specific Real-time PCR yielded efficiencies (E) above 90 . Among the 43 positives samples of An. gambiae, Plasmodium DNA was quantified in 39 samples (absolute copy number ranging from 10 to 913 copies, with the median, 158; [IQR = 93.65?59.8]) and in An. funestus, Plasmodium DNA was quantified in 19 samples of the 22 positive samples (absolute copy number ranging from 51.6 to 816 copies with the median, 333.9; [IQR = 198.9?27.7]). At the species level, DNA target specific to P. falciparum was detected in all positive samples and in the cases of mixed infections with multiples Plasmodium species, P. falciparum DNA was always detected at earlier Ct value indicating that it represented the dominant species. The PCR amplification of ribosomal protein S7 gene (E = 99 ) allowed the estimation of the amount of mosquito DNA in each reaction. Normalization of the amount of Plasmodium DNA on the amount of mosquito DNA showed no difference in parasite load observed between the infected An. gambiae and An. funestus studied (Kruskall-Wallis test, P = 0.2197) (Figure 3).DiscussionIn the context of malaria elimination (eradication) policy, it is essential to develop reliable diagnostic techniques for detecting Plasmodium spp infections in humans and in the vector. The aim of this study was to optimize a high-throughput sensitive and specific real-time PCR assay to detect and quantify Plasmodium infections in malaria vectors in Benin. Here, we used the same region of DNA encoding the small subunit of the18S rRNA to redefine the optimal multiplex PCR assays based on allele-specific primers/ probe systems previously reported by Shokoples et al. [7]. Minor sequence modifications and labeling were made on the probes used by Shokoples et al. [7] to increase specificity and adapt the method to a duplex-based detection system [26]. The genes encoding the small subunit of the18S rRNA exist in several copies (7) in the Plasmodium genome. One of the major advantages of the method previously reported by Shokoples et al. [7] over other approaches [13,18,19], is that the primers designed target all copies thus increasing the sensitivity of the reaction. The use of species-specific oligonucleotides that could accurately detect all four malaria-causing Plasmodium species (Pf, Pm, Po and Pv) without significant competition between the oligonucleotides designed for the different templates was one of the majorFigure 3. Absolute and relative quantification of Plasmodium DNA in mosquitoes. This figure shows a not significant difference was observed in the P. falciparum densities between the two Anopheles species (P-value = 0, 2197). doi:10.1371/journal.pone.0052719.gadvantages of this approach. Here, the multiplexing of the reaction was optimized for the simultaneous detection of the four Plasmodium species at a time in two reaction tubes. This method was tested on plasmid preparations and showed good amplification efficiencies (E.90 ). We also noticed a good sensitivity w.